
Asynchronous Invocation of Adaptations in Electronic Structure Calculations
Sai Kiran Talamudupula, Michael W. Schmidt

Masha Sosonkina Department of Chemistry,
Ames Laboratory, USDOE, Iowa State University

Iowa State University
{kiran123, masha}@scl.ameslab.gov mike@si.msg.chem.iastate.edu

Abstract
Modern quantum chemistry deals with electronic structure

calculations of unprecedented complexity and accuracy. They
demand full power of high-performance computing and must
be in tune with the given architecture for superior efficiency.
To make such applications resource-aware, it is desirable to
enable their static and dynamic adaptations using some ex-
ternal software (middleware), which may monitor both sys-
tem availability and application needs, rather than mix sci-
ence with system-related calls inside the application.

This paper investigates models of application interlinking
with middleware based on the example of the computational
chemistry package GAMESS and middleware NICAN. The
existing synchronous model is limited by the possible delays
due to the middleware processing time under the sustainable
runtime system conditions. Proposed asynchronous and hy-
brid models aim at overcoming this limitation. The experi-
ments contribute to gaining an insight into a choice of the
model.
Keywords: quantum chemistry, GAMESS, application
adaptations, middleware, system resource congestion

1. INTRODUCTION
Electronic structure calculations provide a representative

example of High-Performance Computing (HPC) applica-
tions. They require a large amount of disk space—typically,
several gigabytes—to store the integrals and a large I/O band-
width to use them during the iterative solution process. The
need for the CPU and memory resources scales up with the
number of atoms as a power of 4–7 and 2–4, respectively, de-
pending on the type of calculation executed. Thus, pooling
all the memory and disk resources available in distributed en-
vironments emerges as the solution to such an explosion in
computational needs and, at the same time, challenges to ob-
tain an optimal parallel performance. The latter is nearly in-
feasible without an application awareness of parallel architec-
ture, that is, without being tuned to the architecture at hand.

Dynamic adaptations respond in a timely manner to run-
time changes in the environments, as described, e.g., in [7]. To
implement such adaptations, an application may be supplied
with sophisticated system monitoring strategies and/or with
the analysis of its own (historical) performance. The most

non-intrusive and portable way to accomplish this is to em-
power an application with a middleware that will provide a
liaison between the application and system by monitoring the
system resources dynamically, making adaptation decisions
based on the application performance, and invoking applica-
tion adaptations if needed.

For the computational chemistry, adaptive software archi-
tecture is an emerging area of research. Existing architec-
tures vary from compiler- and model-based engineering ap-
proaches to adaptive algorithms. In [3], a component-based
approach is described. It interfaces many independently de-
veloped numerical adaptation algorithms and implementa-
tions. A recent development has been the inclusion of sup-
port for CQoS, computational quality of service, which has
a measurement, analysis, and control infrastructure for dy-
namic domain-specific decision making. An integration of
HPC applications with middleware tools may empower the
applications with such advanced features as parallel and dis-
tributed programming models, system resource management,
remote application monitoring, and user-interactive material.
Middlewares are more effective if they provide these attrac-
tive features dynamically.

Active Harmony [11] is an infrastructure in which the ap-
plication acts as a client when sending information to the
server, which, in turn, makes application tuning and adapta-
tion decisions based on this information from the client. The
middleware system dQUOB [5] provides continuous evalu-
ation of queries over time sequenced data. The queries are
inserted into the data streams at run time and managed re-
motely during the execution. The goal of IANOS [13] is to
provide a general middleware infrastructure that allows op-
timal positioning and scheduling of HPC Grid applications.
The NICAN middleware, proposed in [9], has been exten-
sively used as adaptive mechanism invocation tool in quan-
tum chemistry applications, such as GAMESS [1]. The in-
teraction between NICAN and GAMESS has not been ana-
lyzed yet, however. Modeling GAMESS execution with and
without NICAN middleware prompted to consider an asyn-
chronous mode of their interaction that appears beneficial for
lightly oscillating system conditions when only few, if any,
application adaptations are required.

This paper is organized as follows. Section 2. gives an
overview of the computational chemistry package GAMESS

and discusses its combination with a middleware tool
NICAN. Section 3. extends the integration to the asyn-
chronous model, followed by its comparison with the syn-
chronous one. Note that, in the rest of the paper, the term
“integration” refers to a combination of the application and
middleware rather than to numerical integration, which is a
stage in quantum chemistry calculations. Performance results
and relevant discussions are provided in Section 4.. Section 5.
concludes and notes on the future work.

2. GAMESS-NICAN INTEGRATION
GAMESS is a computational chemistry application which

is widely used to perform ab-initio molecular quantum chem-
istry calculations. A wide range of quantum chemistry com-
putations are possible using GAMESS such as calculating
Restricted Hartree-Fock (RHF) Self-Consistent Field (SCF)
molecular wavefunctions. Using the SCF method, GAMESS
iteratively approximates solution to the Schrödinger equation
that describes the basic structure of atoms and molecules.
SCF is one of the many computationally intensive parts of
GAMESS and has two different implementations (i.e., execu-
tion modes), direct and conventional, which differ in the way
two-electron (2-e) integrals are computed. In the direct mode,
2-e integrals are recomputed “on-the-fly” for each iteration
consuming mainly physical memory and CPU resources. In
the conventional, these integrals are calculated before the first
SCF iteration and stored in a file on disk. The subsequent it-
erations fetch the 2-e integrals from disk, consuming mainly
I/O bandwidth. So, there are instances when the conventional
SCF implementation proves to be better compared to the di-
rect one and vice-verse. It is feasible to alternate between two
available implementations at run-time. Therefore, by integrat-
ing the SCF process with a middleware that interacts with the
system, dynamic adaptations of SCF may be enabled. There
are other (higher level of theory) calculations available in
GAMESS, such as the second order Möller-Plesset correction
(MP2), that are used to get electron correlations and involve
post SCF calculations to improve the accuracy of solution.
For more details on GAMESS see [1].

2.1. Using NICAN
In [8, 6, 12], an integration of GAMESS with NICAN has

been discussed for the purpose of GAMESS performance tun-
ing and prediction. One way to use NICAN with GAMESS is
to enable GAMESS adaptations in the computationally inten-
sive SCF method. Specifically, NICAN prompts GAMESS to
switch from one SCF implementation to another at the itera-
tion following the detection of the decrease in the GAMESS
performance as measured by its execution time. An increase
in the iteration time typically signifies a change in system
conditions. The NICAN architecture, containing a manager
dedicated to the application along with the various types of

modules to collect the system information and to encapsulate
adaptation control, makes possible this switch. The timely na-
ture of adaptations is assured by GAMESS waiting after each
iteration for the decision from NICAN. Fig. 1 depicts this
GAMESS-NICAN integration featuring a separate GMS NCN
module that implements the adaptation control mechanism
and the GAMESS-NICAN synchronization (depicted as lines
with double arrows) to communicate the adaptation decision
from NICAN to GAMESS. In general, NICAN consists of
dynamically loadable modules making it versatile and provid-
ing a wide variety of interactions with system or application
[4, 10].

NICAN ManagerGMS_NCN

NICAN_Initialize()

SCF Iterations

NICAN_Finalize()

GAMESSNICAN

Figure 1. GAMESS-NICAN integration in the synchronous
model.

3. ASYNCHRONOUS INTEGRATION
Timely adaptations are an important advantage of the

GAMESS-NICAN integration with synchronization, but they
come at a price: When no or few adaptations are required the
GAMESS-NICAN execution time may suffer. Since a cer-
tain system condition typically persists in supercomputers ex-
ecuting HPC applications, it is worth considering an asyn-
chronous integration model. This model differs from its syn-
chronous counterpart in that an application proceeds to the
next iteration without waiting for the decision from NICAN
and adapts, if necessary, later. Certainly, delaying adapta-
tions may be detrimental to the overall performance. Using
GAMESS as an example, this section investigates when the
delays may be tolerated.

Assume that the execution time of a single iteration, in
either direct or conventional mode, does not deviate much
from an average iteration time for that mode in a certain
system state. Consider two distinct system states, Congested
C and Free F, and two SCF execution modes conventional
c and direct d. Then, denote a single iteration time as tS

m,
where m ∈ {d,c} and S ∈ {C,F}. The execution times T S

and T S for the total N iterations when integrated with NICAN
synchronously and asynchronously, respectively, may be ex-

pressed as

TC =
K+1

∑
j=1

δ jtC
m j

+Nτ , (1)

T F = NtF
m +Nτ , (2)

TC
=

K+1

∑
j=1

δ jtC
m j

, (3)

T F
= NtF

m , (4)

where τ is the time required to communicate with NICAN
including the time to decide on an adaptation. K and K are
the number of adaptations for synchronous and asynchronous
models, respectively, such that K ≥ K and j = 0 at the first
SCF iteration while j = K + 1 happens at the last (Nth) it-
eration. Then, δ j and δ j are the numbers of iterations be-
tween adaptation j and (j−1) for the synchronous and asyn-
chronous models, respectively.

The expression (4) of T F contains no term related to
NICAN. Thus, this total time is the same as when GAMESS
is executed without NICAN in the non-congested environ-
ment, and the integration with the NICAN tool becomes less
intrusive.

To analyze the effect of delayed adaptations, consider that
δ1 is always less than δ1. However, for HPC applications,
such as GAMESS, it may be assumed that the adaptation
decision arrives when only one more GAMESS iteration
elapses, i.e., an adaptation is delayed by only one iteration.
Hence, δ1− δ1 = 1. An assumption of persistent congestion
also follows from the fact that an HPC application may heav-
ily consume supercomputer resources, so they are not ac-
quired or released momentarily. Here, persistent congestion
is defined as a system resource congestion the detection of
which causes the given application to adapt only once since
the congestion continues to manifest itself until the applica-
tion termination. This assumption may be reasonable in the
adaptive application parts that are short relative to the entire
application execution time. For example, SCF iterations are
typically much faster than the higher-level calculations, such
as MP2. Under these two additional assumptions, the equa-
tions (1) and (3) may be rewritten as

TC = δ1tC
m1

+(N−δ1)tC
m2

+Nτ , (5)

TC
= (δ1 +1)tC

m1
+(N−δ1−1)tC

m2
. (6)

The asynchronous model becomes beneficial when the total
time TC is smaller than TC, i.e., when

tC
m1
− tC

m2
< Nτ . (7)

In other words, the time difference between iterations in dif-
ferent SCF execution modes under the persistent congestion

should be smaller than the NICAN execution time for the to-
tal N iterations of SCF. This may happen when either N or
τ are very large since there is not much sense to adapt if the
difference tC

m1
− tC

m2
is close to zero.

To increase the number of cases when the asynchronous in-
tegration may be applied, a hybrid model is developed under
the same assumptions. It behaves as the synchronous one un-
til the adaptation is invoked and as asynchronous thereafter.
For the hybrid model, the total SCF iteration time T̃ S is given
as

T̃C = δ1tC
m1

+(N−δ1)tC
m2

+δ1τ , (8)

T̃ F = NtF
m +Nτ . (9)

Note that the first two terms of equation (8) come from (6)
for the synchronous model while the third term in (8) is that
of (6) being reduced by (N− δ1)τ. Thus, the difference be-
tween T̃C and TC is always negative, which implies that
the hybrid integration model performs better than the syn-
chronous. On the other hand, in the no congestion system
state F , both models incur the same overhead.

3.1. Implementation details
The data regarding the iteration time is collected and used

by NICAN to make adaptation decisions. NICAN checks if
the iteration time is above a certain limit and decides on the
execution mode switch. Following the presentation in [6], the
pseudo-code for the jth adaptation decision may be written
as:

ti = Actual time taken for iteration i
tu = Upper bound for the time per iteration
m = Average iteration time between two adaptations
te = Estimated run-time for a single iteration (obtained
by NICAN after running a GAMESS “check” run first.)
∆i = |te− ti|
if ti > tu OR ti > m+∆i then

if (SCF is conventional) then
switch to direct

else if ((no peer conventional jobs) then
switch to conventional

The asynchronous model requires an instant return of con-
trol to GAMESS after communicating with the middleware.
The synchronous model is implemented via Sockets API for
the underlying (blocking) communication and can be modi-
fied into the asynchronous one by changing the communica-
tion to non-blocking. The NICAN Manager-Module interac-
tion is the base for these changes and uses multi-threading.
The Manager invokes the module thread and passes to it the
requests from GAMESS. Due to the asynchronous behav-
ior of thread scheduling in NICAN and of integration with
GAMESS, race conditions are possible and NICAN “stale”

SCF Iterations NICAN

 i = 1

 i = 2 D1

 i =3

 C3

 D3
C2

Figure 2. Timeline diagram indicating the temporal depen-
dence between SCF iterations and NICAN.

decisions may arise. The race conditions are taken care of
by encapsulating the NICAN control algorithm into a critical
section executed sequentially by the module threads. To elim-
inate the production of stale decisions, a global data structure,
represented by an array of the size equal to the number of iter-
ations N, has been implemented. Since a stale decision should
not be sent to GAMESS, before completing its work a given
thread checks whether there is no other thread with a larger
number waiting to enter the critical section.

Fig. 2 shows a timeline diagram for the GAMESS-NICAN
interaction while depicting the handling of possible stale re-
sults of the decision-making process in the module. D1 is the
decision made by the fist thread causing adaptation in the
third SCF iteration. A rectangular box next to the timeline
of NICAN module represents the critical section encapsulat-
ing the control algorithm. The box interior (C2) shows that
the second thread has entered the critical section and is ready
to make a decision while the third thread (C3 outside the box)
is waiting for a lock. To avoid stale results, the second thread
is preempted from the critical section execution and has to
release the lock for the thread. Thus, the decision D3 will be
made by the third thread and passed to GAMESS (dashed ar-
row) in this scenario.

The hybrid model of execution starts as the synchronous
model and shifts to the asynchronous one when the adap-
tation occurs once, which is marked by the global variable
maintaining the SCF execution mode.

Figure 3. Molecule structure: AT (left) and GC (right)

4. EXPERIMENTAL RESULTS
To obtain performance results, two molecules Adenine-

Thymine DNA base pair (AT) and Guanine-Cytosine DNA
base pair (GC) are chosen (Fig. 3). AT and GC are repre-
sented using 321 and 316 basis functions, respectively. The
tests were conducted for two different input combinations:
AT is treated by SCF only while GC continues to the sec-
ond order Möller-Plesset (MP2) after performing the SCF it-
erations, thus giving a more accurate energy value. The SCF
RHF iterations were performed for each combination. Both
molecules start in the conventional mode, i.e., store the 2-e
integrals gin a file on disk and fetch the integrals from the file
when required.

4.1. Architecture and software used
The Dynamo cluster, located in the Scalable Computing

laboratory, is dedicated to GAMESS and other HPC appli-
cation research. There are 35 Intel Xeon E5420 nodes with
two quad-core processors running at 3 GHz. Each node has a
RAM of 16 GB, a 1.5 TB scratch space and runs a 64-bit Red-
hat Linux. For the experiments presented here, the GAMESS
jobs integrated with NICAN are run on up to five entire com-
pute nodes of the cluster, i.e., on 8, 16, 24, 32, 40 cores.

All the three models, synchronous, asynchronous, and hy-
brid, are considered for the integration of parallel GAMESS
calculations and the middleware tool NICAN. Resource con-
gestion is introduced in all the nodes using a file-system
benchmarking utility IOzone [2] during the GAMESS run,
such that the congestion persists until the GAMESS com-
pletion. NICAN is assumed to take 10 seconds to decide on
one adaptation. For the experiments reported here, the small-
est difference between executing any two SCF iterations in
two different modes was observed to be 160 seconds. This
value is greater than the time Nτ consumed by NICAN for
N = 15 iterations typically allocated to SCF and τ = 10 sec-
onds. Furthermore, the largest difference between any two
adjacent SCF iterations was observed to be about 199 sec-
onds. So, the NICAN execution time was deliberately chosen
to demonstrate how the asynchronous model behaves under
the unfavorable conditions and why the hybrid model may be

0
100
200
300
400
500
600
700
800
900

1000

8 16 24 32 40

synchronous

asynchronous

no NICAN

hybrid

Cores

Ti
m
e

Figure 4. AT molecule input with synchronous, asyn-
chronous, hybrid integration, and without NICAN in the pres-
ence of persistent congestion.

0

200

400

600

800

1000

1200

8 16 24 32 40

synchronous

asynchronous

no NICAN

hybrid

Cores

Ti
m
e

Figure 5. GC molecule input with synchronous, asyn-
chronous, hybrid integration, and without NICAN in the pres-
ence of persistent congestion.

needed.

4.2. Discussion of results
For the AT and GC molecules in the presence of conges-

tion, the GAMESS performance is shown in Fig. 4 and Fig. 5,
respectively, with the synchronous, asynchronous, and hybrid
NICAN integration models, as well as when no middleware
is used. The number of cores is represented on the X-axis
whereas the wall-clock time in seconds is shown on the Y-
axis. The congestion forces an adaptation as decided by the
control algorithm (Section 3.1.).

SCF iterations, starting in the conventional mode and run-
ning in the presence of congestion (disk I/O), benefit when
they use synchronous model rather than asynchronous model
of integration. This gain can be attributed to the timely avail-

0

50

100

150

200

250

8 16 24 32 40

synchronous

asynchronous

no NICAN

Cores

Ti
m
e

Figure 6. AT molecule input for synchronous, asyn-
chronous, no-middleware integration in absence of conges-
tion.

ability of the adaptation decision given by NICAN and the
adaptation happening promptly in the iteration following the
congestion discovery. The asynchronous model of integration
is outperformed slightly by the synchronous one due to the
additional iteration executing in the conventional mode. For
both molecules (Fig. 4 and Fig. 5), the number of adapta-
tions is one, i.e., K = K = 1. The numbers of iterations δ1
and δ1 before the adaptation equal to one and two for the syn-
chronous and asynchronous models, respectively, while the
iteration numbers equal to 14 and 13 after the adaptation.

Even with the adaptation delayed, the asynchronous
GAMESS-NICAN integration outperforms GAMESS run-
ning without adaptations as depicted by the tallest bars in
Fig. 4 and Fig. 5. The “no-NICAN” case runs much slower
than 1,000 and 1,200 seconds serving as a cut-off in Fig. 4
and Fig. 5, respectively, to preserve a good exposition scale.
A key observation is that, the workloads as well as dynamic
resource conditions contribute to adaptations at the run-time,
and thus, they both account for the number and frequency of
execution mode shifts. As mentioned earlier, the persistent
congestion limits the number of adaptations to one.

Consider the hybrid model of integration, which is a mix-
ture of synchronous and asynchronous ones. This model elim-
inates adaptation delays for the SCF iterations—thus, allevi-
ating the drawbacks of the asynchronous model—by remain-
ing in the synchronous state while expecting an adaptation
and then switching to the asynchronous one with an assump-
tion that the triggering event (i.e., congestion) will persist.
This switch improves the GAMES-NICAN performance by
eliminating subsequent synchronizations. As predicted theo-
retically in Section 3., the hybrid model performs better than
the synchronous one under this assumption.

The wall clock times of the GAMESS runs without disk I/O
congestion for synchronous and asynchronous models and

0

200

400

600

800

1000

1200

8 16 24 32 40

synchronous

asynchronous

no NICAN

Ti
m
e

Cores

Figure 7. GC molecule input for synchronous, asyn-
chronous, no-middleware integration in absence of conges-
tion.

Table 1. MP2 electron correlation and SCF as percentages
of the total execution time for GC in the absence of conges-
tion and no NICAN.

Cores 8 16 24 32 40
MP2, % 74.4 80.4 86.4 86.6 85.8
SCF, % 15.8 17 12.5 12.3 13

without middleware integration for the AT and GC molecules
are shown in Fig. 6 and Fig. 7, respectively. When there is
only a single conventional job per node, i.e., there is no heavy
disk I/O congestion, the synchronous model of integration
makes computationally intensive SCF calculations wait for
the return of NICAN. In the absence of congestion, the hy-
brid model reduces to the synchronous model, since there is
no call for the adaptation. This may be viewed as the draw-
back of the hybrid model. The asynchronous model of inte-
gration alleviates this situation since it returns immediately to
continue with the subsequent SCF iterations. Thus, for the AT
and GC (Fig. 6 and Fig. 7), the asynchronous model delivers
almost the same performance as GAMESS without NICAN
in the environment requiring no adaptations.

In the case of GC, an MP2 calculation is used after the SCF
iterations complete and takes a significant percent of the exe-
cution time as shown in Table 1. Therefore, the gains over the
synchronous execution are less pronounced. Also, note that,
for the GC calculation (Fig. 7), the wall clock time does not
decrease with the increase in the core numbers, which may
be attributed to the problem size not being sufficiently large
to outweigh the communication and other parallel overhead.

5. CONCLUSIONS
This work investigates three integration models—

synchronous, asynchronous, and hybrid—of the NICAN

middleware with computationally-intensive applications,
such as GAMESS. The total execution times have been
compared among these models when GAMESS algorithm
(SCF) adaptations are invoked and when no adaptation is
needed. It has been demonstrated theoretically and supported
by the experiments that, under the assumption of persistent
congestion, the hybrid model outperforms the synchronous
one, which, in turn, performs better than asynchronous.
However, it may be detrimental to decide on the type of
integration statically, before the actual execution, since the
the presence or absence of congestion is typically a runtime
system condition. Therefore, a hybrid model of integration is
a better choice to start with when the system conditions may
not be ideal and a congestion is probable.

As a future work, the hybrid model is to be extended
for the multiple congestion phases and applied in other
computationally-intensive parts of electronic structure calcu-
lations as well as in other applications that have been inte-
grated with NICAN.

ACKNOWLEDGMENTS
This work was supported in part by Iowa State Uni-

versity under the contract DE-AC02-07CH11358 with the
U.S. Department of Energy, by the Director, Office of Sci-
ence, Division of Mathematical, Information, and Compu-
tational Sciences of the U.S. Department of Energy under
contract number DE-AC02-05CH11231, and by the National
Science Foundation grants NSF/OCI – 0749156, 0941434,
001047772.

REFERENCES
[1] BALDRIDGE, K. K., BOATZ, J. A., ELBERT, S. T.,

GORDON, M. S., JENSEN, J. H., KOSEKI, S., MAT-
SUNAGA, N., NGUYEN, K. A., SU, S., WINDUS,
T. L., DUPUIS, M., JR, J. A. M., AND SCHMIDT,
M. W. General atomic and molecular electronic struc-
ture system. Journal of Computational Chemistry,
November 1993 (1993), 1347–1363.

[2] IOzone filesystem benchmark. http://www.iozone.org/.

[3] KENNY, J. P., WU, M., HUCK, K., GAENKO, A.,
GORDON, M. S., JANSSEN, C. L., MCINNES, L. C.,
MORI, H., NETZLOFF, H. M., NORRIS, B., AND
WINDUS, T. L. Adaptive application composition in
quantum chemistry. In The 5th International Confer-
ence on the Quality of Software Architectures (QoSA
2009), East Stroudsburg University, Pennsylvania, USA,
June 22-26, 2009 (2009).

[4] KULKARNI, D., AND SOSONKINA, M. A framework
for integrating network information into distributed it-
erative solution of sparse linear systems. In High Per-

formance Computing for Computational Science - VEC-
PAR 2002, Porto, Portugal. (2003), J. M. Palma, J. Don-
garra, V. Hernandez, and A. de Sousa., Eds., vol. 2565
of Lecture Notes in Computer Science, Springer-Verlag,
pp. 436–451.

[5] SCHWAN, K., AND PLALE, B. dQUOB: Efficient
queries for reducing end-to-end latency in large data
streams. In High Performance Distributed Computing
(HPDC-9), August 2000 (2000).

[6] SESHAGIRI, L., SOSONKINA, M., AND ZHANG, Z.
Electronic structure calculations and adaptation scheme
in multi-core computing environments. In Computa-
tional Science - ICCS 2009, 9th International Confer-
ence, Baton Rouge, LA, USA, May 25-27, 2009, Pro-
ceedings, Part I (2009), G. Allen, J. Nabrzyski, E. Sei-
del, G. D. van Albada, J. Dongarra, and P. M. A. Sloot,
Eds., vol. 5544 of Lecture Notes in Computer Science,
Springer, pp. 3–12.

[7] SESHAGIRI, L., SOSONKINA, M., AND ZHANG, Z.
Exploring tuning strategies for quantum chemistry ap-
plications. In In Proc. 2009 Int’l Workshop on
Automatic Performance Tuning (iWAPT-2009), Tokyo,
Japan, Oct 1-2, 2009 (2009).

[8] SESHAGIRI, L., WU, M., SOSONKINA, M., ZHANG,
Z., GORDON, M. S., AND SCHMIDT, M. W. Enhanc-
ing adaptive middleware for quantum chemistry appli-
cations with a database framework. In Int’l Parallel and
Distributed Processing Symposium (IPDPS 2010), 11th
Workshop on Parallel and Distributed Scientific and En-
gineering Computing, Atlanta, GA, Apr. 2010 (2010).

[9] SOSONKINA, M. Runtime adaptation of an itera-
tive linear system solution to distributed environments.
In Applied Parallel Computing, PARA 2000. (2001),
T. Sørevik, F. Manne, R. Moe, and A. H. Gebremedhin.,
Eds., vol. 1947 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 132–140.

[10] S.STORIE, AND SOSONKINA, M. Packet probing as
network load detection for scientific applications at run-
time. In Proc. 18th International Parallel & Distributed
Processing Symposium (IPDPS), Santa Fe, NM. (2004),
IEEE Computer Society. 10 pages.

[11] TAPUS, C., CHUNG, I.-H., AND HOLLINGSWORTH,
J. K. Active Harmony: Towards automated perfor-
mance tuning. In In Proceedings from the Confer-
ence on High Performance Networking and Computing
(2003), pp. 1–11.

[12] USTEMIROV, N., SOSONKINA, M., GORDON, M. S.,
AND SCHMIDT, M. W. Dynamic algorithm selection

in parallel GAMESS calculations. In Proc. 2006 In-
ternational Conference on Parallel Processing Work-
shops, Columbus, OH (2006), IEEE Computer Society,
pp. 489–496.

[13] WIEDER, P., ZIEGLER, W., AND KELLER, V. IANOS
– efficient use of hpc grid resources. ERCIM News 2008,
74 (2008).

